
SOFTWARE

QUALITY

GUIDELINES

Ho
w

 to
 fo

cu
s

on
 w

ha
t m

at
te

rs
 th

e
m

os
t?

1. Introduction
2. Functional suitability
3. Reliability
4. Compatibility
5. Portability
6. Usability
7. Performance efficiency
8. Security
9. Maintainability
10. Conclusion

CONTENT

V A L A S O F T W A R E Q U A L I T Y

G U I D E L I N E S

01.I N T RO D U C T I O N V A L A S O F T W A R E Q U A L I T Y

G U I D E L I N E S

Leena Saari

Co-Author

This is a VALA guide for quality leads and business representatives to determine
what kind of quality aspects to focus on in a software development project. The
guide can also be used as a basis for quality strategy planning or
reassessment.

In this guide, we’ll explain all the quality aspects there are in a software product
and in its use, and how they can be taken into account not only in testing but
throughout the whole software development lifecycle.

Why is it important to define these quality goals? ISO-standard based
categorizing provides better confidence for covering various quality
characteristics and for selecting the right ones to focus on. If these quality
aspects are recognized and aligned with business needs from the beginning,
the non-functional quality can be handled well by best professionals. The
earlier you can identify a quality goal, the easier it is to build that in a software.
For example it is difficult to reach high performance if the architectural choices
do not allow it, and if development and testing haven’t paid attention to it from
the beginning. High performance, just like any other quality aspect is not easy
to add into an “otherwise finished” software.

All in all, this is an excellent basis for creating quality strategy, selecting the right
testing approach to fulfil these goals and preparing for testing that requires
special skills from early on. Also the magnetism of building new features will not
override the vital quality improvement work, if the quality goals and their value
to users and business have been recognized.

We hope you find this guide useful in your quality work!

These quality aspects are based in SQuaRE-standards “Measurement of system
and software product quality” (ISO/IEC 25023/2016) and also slightly in
“Measurement of quality in use” (ISO/IEC 25022/2016).

Special thanks: Special thanks to Esa Hakulinen, Johannes
Heikkinen, Mari Hänninen, Samuli Paasimaa and Toni
Roschier for proof-reading and adding their views to the text
and all VALA Mhub test management community members
for the bug examples!

SOFTWARE QUALITY
 GUIDELINES

IN SHORT

Functional suitability is a quality aspect which considers,
whether the product suits “stated and implied” needs of

the user, when used under specific circumstances.

FUNCTIONAL SUITABILITY
Reliability is a quality aspect, which tells if a
system does what is specified and behaves
in an expected manner in its environment.

From the user perspective compatibility appears
as smooth usage, disregarding whether the usage

flow runs on only one software or many.

Portable systems can be installed
and used in different environments,
or they can replace similar systems.

When a user can use the software easily the
way they want to and even feel satisfied while

using it, the software can be considered usable.

Performance efficiency measures
software’s Time-behavior
and Resource utilisation.

Secure software keeps all the data
and information protected from

unauthorized use.

Maintainability is a quality aspect
which explains how easy it is to update

and change the system.

RELIABILITY

COMPATIBILITY PORTABILITY

USABILITY PERFORMANCE EFFICIENCY

SECURITY MAINTAINABILITY

Functional completeness
Functional correctness
Functional appropriateness

CONSISTS OF

Maturity
Availability
Fault tolerance
Recoverability

CONSISTS OF

Co-existence and
Interoperability

CONSISTS OF

Adaptability
Installability and
Replaceability

CONSISTS OF

Appropriateness and recognizability
Learnability
Operability and user error protection
User interface aesthetics and
Accessibility

CONSISTS OF

Time-behavior and
Resource utilisation

CONSISTS OF

Confidentiality
Integrity and authenticity
Non-repudiation, and
Accountability.

CONSISTS OF

Modularity
Reusability
Analysability
Modifiability
Testability

CONSISTS OF

1.1
H i g h - q u a l i t y s o ft wa re le a d s t o a
h i g h - q u a l i t y u s e r ex p e r i e n c e

The IEC and ISO

encourage the

development of

products,

systems and

services that are

safe, efficient

and

environmentally

friendly.

There are plenty of software quality definitions to pick
from.

A few good examples of defining quality are:

1. A software that fits well into its purpose and to its
user groups
2. Something that makes the users feel efficient,
happy and productive
3. Optimized usage flows, avoiding unnecessary
steps
4. Or something more precise, such as accessibility,
where the software is designed, developed and
tested in terms of making the software usable for
people with disabilities.

These quality characteristics are explained in the
following chapters based on Systems and software
engineering - Systems and software quality
requirements and evaluation (SQuaRE) - standards:

Measurement of quality in use (ISO/IEC
25022/2016)
Measurement of system and software product
quality (ISO/IEC 25023/2016)

V A L A S O F T W A R E Q U A L I T Y

G U I D E L I N E S

1.2

I D E N T I F Y O N
 A H I G H LE V E L P R I O R I T I Z E

what each product quality
means in your system or
product context.

H ow t o u s e S o ft wa re Q u a l i t y A s p ec t s ?

V A L A S O F T W A R E Q U A L I T Y

G U I D E L I N E S

This guide concentrates on explaining product quality which leads to quality in use, and how
product quality can be taken into account in quality work during the software development. Note,
that this is not a template that needs to be filled, but a supporting document in your quality
strategy work.

You can use this guide as a product owner in defining quality priorities, or as a quality manager
aiming for a well justified quality strategy, or in any position where you need to plan and prioritize
your work in software development. This guide is in best use when these quality aspects are
considered in good co-operation with the business-oriented people, who may find it difficult to
articulate their quality goals in such a detail that it can guideline the way of working. Additionally,
when these quality goals are defined together, the importance of non-functional requirements
can be appreciated more by stakeholders, and the time spent on for example performance
testing is easily justified.

This quality goal definition is best to be done at the planning stage of a project, but it is also useful
when planning the testing of a product and whenever there is a good spot to step up with quality.

C H O O S E
S P E C I F Y &
E X P L A I N

these quality aspects in
running numbers together
with the stakeholders of the
system under development.

from 3 to 5 aspects to
improve in the next
development phase in the
current software
development life-cycle.

how to improve the quality
of the chosen aspects in
your quality strategy
document.

If you harness these quality aspects in the software development work, you are more likely to be
working on things that matter the most and your quality-related decisions will be well justified
based on business needs!

Define software quality goals with the following steps:

02.FUNCTIONAL

SUITABILITY

V A L A S O F T W A R E Q U A L I T Y

G U I D E L I N E S

Functional suitability is a quality aspect which considers, whether the
product suits “stated and implied” needs of the user, when used under
specific circumstances.

Functional suitability consists of (ISO_IEC_25023/2016)

Functional completeness
Functional correctness
Functional appropriateness.

Functionally complete software covers all related tasks and the user
achieves their goals. Functional correctness refers to correct and precise
results of functionality. In practice it seems to be that functional
completeness and correctness are the best considered quality areas, as
functional specifications and functional testing is the main approach in
many projects.

Appropriateness refers to software suiting well in situations where the
software is used. Functional appropriateness is many times forgotten in
the testing phase, even though it is as important as the two
characteristics above; can the software really fulfill the needs of its users?

2.1

I S D O

the feature ready, so that
the user can complete the
specified tasks with the
software?

H ow t o u s e i t i n q u a l i t y m a n a ge m e n t ?

V A L A S O F T W A R E Q U A L I T Y

G U I D E L I N E S

Some of the basic questions to consider regarding functional suitability are:

D O E S B Y

different input combinations
produce correct results? Does the
software have all the important
features?

the software function the
way it was designed? The
designed functionality is
often well covered in either
feature testing or test
automation.

whom and in what situation is this
software used? Does the software
suit these different user groups in
their varying usage flows? This is best
covered by exploratory testing done
by a tester with an open mind and
understanding the mindset of the
users, or acceptance testers with
strong context knowledge.

The designed functionality is often well covered in either feature testing or end-to-end test
automation. However, functional appropriateness is best covered by exploratory testing
done by a tester in the development team with an open mind and the understanding of the
users, or by acceptance testers with strong context knowledge.

2.2

F E E LI N G O F A CC U R A C Y A N D
CO M P LE T E N E S S

The user can achieve specific goals, in a way
that feels right to the purposes of each user
group.

I n t h e eye s o f t h e u s e r :
e f f ec t i ve a n d s u i t a b le u s a ge

V A L A S O F T W A R E Q U A L I T Y

G U I D E L I N E S

When the software has good functional suitability, it makes the use of the software
effective and well-suited to the situation it is used in.

This leads to the following the user experiences (ISO_IEC_25022/2016):

CO N T E X T
 CO M P LE T E N E S S

Feeling of getting things done. The user
doesn’t get stuck before the goal is reached,
and the use is effective, efficient, risk-free
and satisfying.

F LE X I B I LI T Y

The user can use the software in new
situations, beyond the specified context.

“I once noticed late - in the acceptance

testing phase - that the core

functionalities and its specifications

covered the needs of only one user

group, and all the alternative paths

were undesigned, undeveloped and

untested, making it impossible for

other user groups to use the software.

This led the development team to pull

the whole feature back to the design

table.”

- VALA Test Lead

F U N C T I O N A L S U I TA B I LI T Y B U G E X A M P LE

V A L A S O F T W A R E Q U A L I T Y

G U I D E L I N E S

03.
RELIABILITY

V A L A S O F T W A R E Q U A L I T Y

G U I D E L I N E S

Reliability is a quality aspect, which tells if a system does what is
specified and behaves in an expected manner in its environment.

Reliability consists of (ISO_IEC_25023/2016):

Maturity; how finalized the system is?
Availability; system and its parts are available for use when
needed
fault tolerance; a system can be used even at failure situations
and
Recoverability; how well the system recovers from a fault or
interruption.

3.1
H ow t o u s e i t i n q u a l i t y m a n a ge m e n t ?

System maturity can be followed in the development phase by measuring the test coverage,
and the ratio of how many issues have been fixed out of all found issues.

Fault tolerance can be well revealed in exploratory testing where the system is pushed over the
limits of normal use in order to find faulty situations and how can the system be used despite
these errors.

Recoverability can be improved by ensuring there is a proper and up-to-date backup data for
the production use, but also by analysing how long it takes for the system to recover from a
failure.

The above mentioned metrics are too rarely measured from systems in the development
phase, even though unstable development (including test) environments and unavailability of
a system under test can slow the development speed significantly.

Reliability figures are often monitored and analysed in production. Significant deviations in
production system availability, fault tolerance or reliability figures should cause an alarm, but
trends in these figures provide useful input for the development team after each release.

Here are a few examples of reliability related service level objectives (SLO):

How often can the system be unavailable?
How long is the system down when a failure happens? Does it auto-recover?
The mean time between failures during the system operation.

V A L A S O F T W A R E Q U A L I T Y

G U I D E L I N E S

“The system didn't specify the max size

of user input files, and if a user put a

too large file in, the whole system went

into failure and whole production was

down until that was manually repaired.”

- Examples by VALA M-hub Community

Members

R E LI A B I LI T Y B U G E X A M P LE

V A L A S O F T W A R E Q U A L I T Y

G U I D E L I N E S

04.
COMPATIB ILITY

V A L A S O F T W A R E Q U A L I T Y

G U I D E L I N E S

From the user perspective compatibility looks like a smooth usage
disregarding whether the usage flow runs on only one software or
many. For example when a user is buying something from a web
store, the money transactions are handled via third party systems
without the user having to put in any payment details manually.

Compatibility consists of (ISO_IEC_25023/2016):

Co-existence and
Interoperability.

Coexistence means that two or more functions or systems share
the same resources without mixing things up.

Interoperability means that the interfaces between different
systems work well together. Interoperability refers to different
programs exchanging information, sharing files and using the
same protocols.

4.1
H ow t o u s e i t i n q u a l i t y m a n a ge m e n t ?

Compatibility needs to be specified properly; what interfaces do the
components or systems have, and what kind of communication is supported
between them? If APIs are well-specified, they are easy to be utilized in
integration testing. The agreed API contracts should be verified with contract
testing.

In feature testing it can be useful to mock out integrations, to ensure that we
are testing only the software under test. For system integration testing, test
environments need to provide the actual dependent systems to be utilized. If
the dependent systems are too unstable or for other reasons can’t be
utilized, the dependent systems need to be mocked well to replicate the
interaction with the system under test. However, if dependent systems are
mocked out in all stages, it can lead to quality risks due to uncovered
features in the mock or the mocks not being up-to-date.

To ensure good compatibility, it is important to do sufficient platform testing,
component integration and system integration testing and/or API testing.

V A L A S O F T W A R E Q U A L I T Y

G U I D E L I N E S

“A file was written in a UTF-8 format in

a sending system. Reading system

assumed the file was in ANSI format

and read it that way. This caused special

letters to be shown as a garbage.”

“Data submitted from device A worked

just fine. Same kind of data submitted

from device B messed up the system so

badly that nothing could be submitted

from any device after that until the

table was cleared from corrupted data.”

- Examples by VALA m-hub community

members

CO M PAT I B I LI T Y B U G E X A M P LE

V A L A S O F T W A R E Q U A L I T Y

G U I D E L I N E S

05.PORTABILITY

V A L A S O F T W A R E Q U A L I T Y

G U I D E L I N E S

Portable systems can be installed and used in different
environments, or they can replace similar systems.

Portability characteristics are (ISO_IEC_25023/2016):

Adaptability
Installability and
Replaceability.

Adaptable systems can be transferred and installed easily from
one platform to another. Here’s a list of example target platforms
which a portable system can easily switch between:

changing operating systems (compatible with Mac and
Windows, mobile app compatible with Android and iOS)
updated operating system versions
different browsers
or pointing to a new interface used by the system (this can be
done for example by standardized API structures).

Installability measures how effective and easy it is to install the
software and software updates in different platforms. This is
important when developing software that needs to be installed by
the users. The installation should also be as automated as possible
with a minimal amount of interference and configuration needed
by the user.

Replaceability measures how easy it is to replace the software
with another similar software. This needs to be considered also
when one component is changed in a large system.

5.1

H O W S I M I L A R I S T H E U S A G E O F T H E S O F T WA R E ? A R E T H E
P O S S I B L E A P I ' S S I M I L A R ?

H ow t o u s e i t i n q u a l i t y m a n a ge m e n t ?

V A L A S O F T W A R E Q U A L I T Y

G U I D E L I N E S

As testing portability is very repetitive, automation should be utilized to minimize toil,
and to enable testing it continuously whenever changes have been made. To avoid
huge costs in hardware, testing can utilize cloud-hosted test farms, where the tests
can be run on multiple real-life devices.

C A N T H E S O F T WA R E F I T W E L L I N T H E O V E R A L L F U N C T I O N A L I T Y O F
T H E W H O L E S Y S T E M ? W O U L D T H E O V E R A L L U S E R E X P E R I E N C E O F
T H E S Y S T E M S TAY T H E S A M E ?

A R E C H A N G E S I N T H E D ATA
N E E D E D ?

Replaceability can be evaluated with these questions:

C A N C O N T R A C T T E S T I N G B E U S E D T O
V E R I F Y R E P L A C E A B I L I T Y I N A P I ' S ?

“Non-scalable graphics [caused issues

in one project]: when ipad 3 came out,

the ui was tiny.”

“Inhouse CI system worked only on one

server. Tried to move to another server

without success.”

-Examples by VALA M-hub Community

Members

P O R TA B I LI T Y B U G E X A M P LE

V A L A S O F T W A R E Q U A L I T Y

G U I D E L I N E S

06.
USABILITY

V A L A S O F T W A R E Q U A L I T Y

G U I D E L I N E S

When a user can use the software easily the way they want to and
even feel satisfied using it, the software can be considered usable.

However, usability consists of many different areas
(ISO_IEC_25023/2016):

Appropriateness and recognizability,
Learnability
Operability and user error protection,
User interface aesthetics and
Accessibility.

06.
A P P R O P R I AT E

software meets the user's needs. It fulfills the
tasks the user has to accomplish, and does it
the way the user expects them to in this
context. Recognizability relates to a new user
recognizing if the software would fit their
needs.

L E A R N A B L E

software is working in such an understandable
way, that it provides an intuitive way to
accomplish user goals without having to read
loads of manuals.

O P E R A B L E

software is easy and consistent in use and
enables the user to customize their own views
and undo selections when wanted. A user can
also control how to use it, for instance operate
it with a keyboard, mouse or voice commands;
moreover, there can be messages (such as
popups and tooltips) to guide the user
forward. For example if there is a summary of
user selections, a user should be able to adjust
the selections before proceeding.

e-Commerce

S i te

V A L A S O F T W A R E Q U A L I T Y

G U I D E L I N E S

USABILITY

U S E R

I N T E R FA C E

A E S T H E T I C S

enables pleasing and satisfying interaction to
the user, and is strongly related to the
consumer product’s brand and wanted visual
look and feel.

A C C E S S I B I L I T Y

means that users with different characteristics
(such as native language) or disabilities -
permanent, non-permanent or situational -
can use the system without difficulties.
Accessibility is one of the primary outcomes of
inclusive design, which focuses on making
solutions usable for everyone, regardless of
their conditions, environment or abilities.

6.1
H ow t o u s e i t i n q u a l i t y
m a n a ge m e n t ?

Unit testing is

often the best

level to ensure

basic operation

functions and

graceful error

handling.

V A L A S O F T W A R E Q U A L I T Y

G U I D E L I N E S

To be able to predict in the development phase
whether usability is sufficient, it is important to
have a comprehensive understanding of the
target users, their abilities and for what purpose
they mainly use the system. This understanding
can be gained by user interviews, by following
their system usage, by collecting usage data from
production or by discussing with someone from
the business with deep customer understanding.

This understanding is then utilized in exploratory
testing of a certain usability characteristics, for
example this way:

Thinking about what the user wants to
accomplish and walking through the software
in the users’ shoes.
Using a tester without prior knowledge to test
recognizability and learnability.
Exploring the consistency of different use flows
and that the software prevents a user from
making mistakes.
The look and feel of the user interface is
pleasant and consistent with the design.
The core features can actually be operated
with for example a reading device.

UI test automation can be used to ensure
operability and error handling, but also unit
testing is often the best level to ensure basic
operation functions and graceful error handling.

6.2 i n t h e eye s o f t h e u s e r :
u s a b i l i t y le a d s t o s a t i s f i ed u s e r s

Usable software makes the usage of the software well fitting or simply stated
it is usable.

Usability answers to the following questions (ISO_IEC_25022/2016):

Satisfaction: is the user feeling good interacting with the system and
having an overall positive attitude towards the system?
Usefulness: does the user feel the goals are achieved, including the
results and the consequences of using the system?
Trust: how confident does the user feel that the system will behave as
intended?
Pleasure: how well are the user needs fulfilled, how pleased does the user
feel using the system compared to other similar systems?
Comfort: is the user feeling physically comfortable using the system?

In production user satisfaction can be clarified by interviewing users,
following on one user or gathering feedback or by monitoring and gathering
trends on for example these items:

Amount of users per feature; the more popular, the better
Amount of users leaving the process before finishing tells of poor usability
Complaints per feature
Users with complaints / all users
Support requests / all users.

V A L A S O F T W A R E Q U A L I T Y

G U I D E L I N E S

“After filling my information I got a

message saying how the information

should have been filled and all the fields

were cleared.”

“There was a system that had hidden

functionalities behind not-button

looking elements on the page. They

were tailor made by customer requests

and they were all different, and

eventually the system was impossible to

use.”

-Examples by VALA M-hub Community

Members

U S A B I LI T Y B U G E X A M P LE

V A L A S O F T W A R E Q U A L I T Y

G U I D E L I N E S

07.
PERFORMANCE

EFF IC IENCY

V A L A S O F T W A R E Q U A L I T Y

G U I D E L I N E S

Performance efficiency measures software’s (ISO_IEC_25023/2016):

Time-behavior
Resource utilisation.

Time-behavior evaluates if the software provides appropriate
responses to requests within a reasonable time frame over the
network (response time) and if it can handle enough of such requests
and responses (throughput rate). When measuring time-behavior of a
software, response time is the difference between time when request
was sent and time when response has been fully received. This should
not be confused with the term latency, which doesn't take into account
the time receiving the response content.

In other words, if the system under development was a high-way,
response time would measure the time it takes for one car to drive it
end-to-end, throughput rate would measure the amount of cars
flowing through the high-way in a reasonable time, and the resource
utilization would measure the sufficient amount of lanes for the
amount of cars using the road.

7.1
H ow t o u s e i n q u a l i t y m a n a ge m e n t ?

Performance efficiency improvements need to focus especially on the most important core
functionalities, but more rarely used functions don’t usually need so much optimising. In
production, resource utilization may cause significant expenses if you have too little resources
(leading to unstable software for example due to running out of memory) or too much resources
(leading to high resource expenses) in production use.

The acceptable level of performance efficiency needs to be ensured at the very beginning, in
requirement definition and architectural design phases.

Some of the considerations could be:

How many simultaneous users does the system need to support? What is the median of usage
load?
Are there going to be some occasional or seasonal load peaks? Do we need to be able to scale
the capacity up rapidly, or is the user volume more static?
Which functionalities need to be optimized and which can be slower?
Is it okay to cause a lot of internet traffic or should it be optimized in the software?
How much hardware resources are required for the software to run smoothly?
Are some functions too resource intensive?

Performance testing is a special skill that may require an additional performance testing expert to
design and implement performance test cases and guide the team with implementing them.
However this should not be a one time task, as performance should be automatically and
continuously tested against baselines throughout the project.

A baseline can be a median response time for a type of request (e.g. a certain API call).
Continuous testing is needed to ensure that changes do not suddenly cause degraded
performance or sharp increases in resource consumption. When testing the software
continuously against the baselines, it can be detected if changes had an effect on performance.
Measuring performance just before the release leaves no time for adjusting a performance
critical system.

When the limits of the system are identified, the software needs to ensure that too capacity
intensive actions are prevented, for example by preventing users from loading too large files into
the system. More on software reliability in Chapter 3, Reliability.

V A L A S O F T W A R E Q U A L I T Y

G U I D E L I N E S

7.2
I n t h e eye s o f t h e u s e r :
A d eq u a t e p e r f o r m a n c e le a d s t o
e f f i c i e n c y o f u s e

The acceptable

level of

performance

efficiency needs

to be ensured at

the very start,

in requirement

definition and

architectural

design phases.

V A L A S O F T W A R E Q U A L I T Y

G U I D E L I N E S

When enough resources are expended to
match the accuracy and completeness with
which users achieve goals, it leads to
(ISO_IEC_25022/2016):

A correct way of building the product to
match the usage loads and
Optimized core workflows make it easier to
reach the most important user goals.

When using a software with adequate
performance, the user doesn’t need to
noticeably wait for the system to process the
wanted functions or the system doesn’t end up
in failure if the user does a heavy search or
inputs a large file for system handling.

“After submitting a form, the back end

processed the info so long that the user

was logged out from the website due to

inactivity and the process needed to

start from the beginning.”

“Opening a table with a large amount of

data took so long, that it timed out in

the frontend. The heavy users of this

software couldn’t access their vital

information in production.”

“The phone answering machine should

have been able to collect at least

hundred simultaneous phone call

attempts. Instead it succeeded to serve

only three. Not yet ready for

production…”

-Examples by VALA M-hub Community

Members

P E R F O R M A N C E B U G E X A M P LE

V A L A S O F T W A R E Q U A L I T Y

G U I D E L I N E S

08.
SECURITY

V A L A S O F T W A R E Q U A L I T Y

G U I D E L I N E S

Secure software keeps all the data and information protected from
unauthorized use.

Security consists of (ISO_IEC_25023/2016):

Confidentiality
Integrity and authenticity
Non-repudiation
And accountability.

Confidentiality means that the data or information is available for
authorized and unavailable for unauthorized persons or groups. A
failure in confidentiality happens when someone who should not
have access to certain information or data, manages to gain
access. The confidentiality rules may come from company policies
and agreements but in certain domains regulatory compliance
defines many confidentiality rules by law.

Integrity can be explained by how the authenticity of information
is ensured. In other words, the source of the information is genuine
and the information is not altered, corrupted or destroyed.
Authenticity guarantees that data is genuine and originated from
its purported source. It is a special case of integrity. Integrity
means the data is untouched and complete, authenticity means
data is what it claims to be.

Non-repudiation refers to a situation, where a party can't deny the
authenticity of their signature on information or data. So for
example a user can’t later deny he/she was the one who placed
an order and therefore needs to pay for it.

Accountability means that transactions can be traced back later
to individual users. E.g. accountability is met when unique user
identification and authentication are used. The usage of shared
user IDs and passwords destroys accountability.

8.1 H ow t o u s e i n q u a l i t y m a n a ge m e n t ?

It is beneficial to consult security experts on security related issues and how
they should be handled by the software. It is not very effective to only run a
security scan before a release, as many things need to be implemented
early on in the product life-cycle to make the software under development
secure enough in the given domain. Adding abuser stories to user stories
could be one way of adding security characteristics in the software.

Testing confidentiality is a part of normal blackbox testing, where it is
ensured that only authorized user groups have access to the given features,
and the user-defined password is required to be strong enough. Integrity is
suitable to be tested in whitebox testing; how well is the unauthorized access
and editing prevented in the component or system integration level?

It needs to be evaluated, if the data is strongly encrypted or is the data lying
around in natural language, easily read by anyone with access? Also, using
well-established digital signature helps in having non-repudiable service, if
applicable.

Accountability can be tested by making an action and seeing if it can be
found in the system logs, revealing the correct user in action. If data history
needs to be saved, the earlier versions of data need to be saved in the
database as obsolete versions (as audit trail entries), and this can be tested
by changing the data and seeing the old versions in the database correctly.

If security protection is vital, penetration testing can be used to simulate an
attack with an aim in unauthorized access in a more forceful way.

V A L A S O F T W A R E Q U A L I T Y

G U I D E L I N E S

8.2
I n t h e eye s o f t h e u s e r :
S ec u re s o ft wa re le a d s t o s a f e
s o ft wa re u s a ge

When a

software is

secure, the user

doesn’t have to

take economic

risks using it.

V A L A S O F T W A R E Q U A L I T Y

G U I D E L I N E S

When security factors are well taken care of in the
software, it provides secure usage of the software to
users.

Security in usage consists of (ISO_IEC_25022/2016):

Avoiding economic damage risk
Avoiding health and safety risk
Avoiding environmental harm risk

So when software is secure the user doesn’t have to
take economic risks using it (as in unsecure payments
or leaking financial information for criminal use). Also
the company's commercial property and reputation
are better protected, which is important as issues in
economics not only cause direct economical effects,
but can lead to severe reputation turnbacks leading to
massive customer getaway for a long period of time.

Secure software usage doesn’t lead to health or safety
risks to anyone. So for example a social networking
application should prevent harassing others behind
disguised identities and a software in car dashboard
should want the user if some of the safety systems
malfunction.

Environmentally secure software does not for example
enable the user to select to leak toxic waste into
nature, or for example doesn’t require alarming
amounts of energy to operate, as current blockchain
technology -based solutions such as cryptocurrencies
do.

“A login system didn't check if the

entered password belonged to the

entered user which meant a user could

login as admin with their own

password.”

“The user groups were allowed to do

completely different things than what

the specifications said. When the bugs

were fixed in production, the old users

were so accustomed to the "wrong" user

rights, that they needed to be returned

back. This caused loss of income, as the

user rights with more privileges should

have been more expensive.”

“You could put the user id of another

user in the URL and see their data.”

-Examples by VALA M-hub Community

Members

S E C U R I T Y B U G E X A M P LE

V A L A S O F T W A R E Q U A L I T Y

G U I D E L I N E S

09.

MAINTAINABILITY

V A L A S O F T W A R E Q U A L I T Y

G U I D E L I N E S

Maintainability is a quality aspect which explains how easy it is to
update and change the system.

Maintainability consists of (ISO_IEC_25023/2016):

Modularity
Reusability
Analysability
Modifiability
Testability

A modular system consists of as independent modules as
possible, and each module is not very complex.

Reusable assets can be used many times; in different functions or
as a part of building other modules.

Analysable system consists of readable and complete system
logs to analyse production usage and to diagnose failures in the
system. This is vital in error recovery in systems that need to be
highly available.

Modifiable system is easy to change; the work is efficient and
doesn’t easily lead to errors.

Testable system is easy to test manually using the system itself
and automatically with an external test automation software.

9.1
H ow t o u s e i n q u a l i t y m a n a ge m e n t ?

All maintainability issues can be avoided with proper technical design and
modern software development methods such as agile and DevOps, where
testability and automation is a natural part of planning on any feature to be
developed.

Modularity, reusability and modifiability can be assessed in the code review
before any code can be put in the main branch. To improve reusability, all
code needs to be written according to agreed coding rules. Analysability can
be checked and improved in development including testing, so there’ll be no
problems in analysing urgent production issues when they arise.

Testability of the whole system under development is also a factor that
needs to be assessed before the actual testing begins.

A quality manager needs to consider for example these questions:

How complete user flows can the testing cover?
How independent is the testing from external systems, or can they be
mocked out?
How should the tests be automated in the most simple way? Are the UI
elements and their properties available for the testing tool? What about
APIs?
And last, how easy is it to stop testing and have a fresh restart of the
testing when needed?

V A L A S O F T W A R E Q U A L I T Y

G U I D E L I N E S

“Our oldest test automation code was

done so that all the test cases, part of

the functionalities and test data were all

put in the same spaghetti code. We

threw it away, it was not easily fixable.”

“The system was built so that all form

elements (with their related HTML

code) were stored in a database. I spent

4 hours trying to add a new form field

on a web page which should be a one

minute thing.”

-Examples by VALA M-hub Community

Members

M A I N TA I N A B I LI T Y B U G E X A M P LE

V A L A S O F T W A R E Q U A L I T Y

G U I D E L I N E S

10
C o n c l u s i o n :
B u s i n e s s c r i t i c a l q u a l i t y

With this guide

the reader is

able to conclude

with the

business

representatives,

what quality

means in their

software.

V A L A S O F T W A R E Q U A L I T Y

G U I D E L I N E S

With this guide the reader is able to conclude with
the business representatives, what quality means in
their software. Moreover, they are more aware of
what is critical and what is not at a given stage of the
product life-cycle. For example, they should be able
to choose the top three priorities.

We should trust the development team - including
testing - and enable them to find the best ways to
reach the business critical quality goals. When these
goals and their priorities are thought over and
agreed upon in advance, the quality strategy and
the development efforts are more likely to lead into
wanted results.

Having shared goals is the key to successful software
development, and right goals are critical to
successful business.

Best of luck in quality improvement endeavours!

VALA is a leading software quality

consultancy company in Finland.

A vision of being the happiest company

has brought the brightest and most

skilled quality experts to VALA.

And they are ready to help you too.

W W W . V A L A G R O U P . C O M

C O N T A C T U S H E R E

THANK

YOU!

http://valagroup.com/
https://www.valagroup.com/contact/

